Research Statement of Zihan Yang

Introduction. Motivated by the limitations of how current robots operate, I aim to develop gen-
eralizable solutions that can adapt to various tasks and environments. I believe that endowing
robots with generalizable decision-making capabilities is key to unlocking their transformative
impact on society.

My Previous Research: Learning for Planning and Control of Aggressive Motions
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Generalizability matters: Representation Capacity + Structural Abstraction

Figure 1: Overview of my previous research on learning-based planning and control, with ex-
tensions toward applying control theory to the design of deep learning models.

Previous Research. My research has focused on learning-based methods for taming residual
physics and disturbances in robotic dynamics. I have developed several frameworks from both
planning and control perspectives. On the planning side, my work involves fine-tuning refer-
ence trajectories [|1] to minimize control errors (Best Student Paper Award in ICCA 2024) and
leveraging neural ordinary differential equations (neural ODEs) to model and mitigate residual
effects along optimized trajectories [2]]. For control, I have explored online learning of distur-
bances using meta-learned representations that enable real-time adaptation to novel disturbances
[3]l. Additionally, I have investigated the decoupling of disturbances into state-dependent and
time-varying components using Chebyshev polynomials [4]. Through these efforts, I observed
that model generalizability stems from both representation capacity and structural abstrac-
tion, with the latter benefiting significantly from principles in control theory. Building on this
insight, I proposed a feedback-augmented neural ODE framework that learns latent dynamics
while incorporating online state feedback to calibrate model rollouts, resulting in more gener-
alizable online predictions [5]] (Oral in ICLR 2025). Despite promising results, these models
are not yet directly applicable to more complex tasks, such as locomotion of articulated robots,
long-horizon planning, or decision-making in manipulation. This motivates my ongoing efforts
towards solving more general robotic tasks.

Current Interests. Generative models, such as diffusion-based [6]], and flow-based archi-
tectures [8]], have demonstrated remarkable compositional generalization. When conditioned on
specific tasks or environments, these models exhibit strong adaptability in robotic applications



(9], [10], [11]. T am developing methods to integrate generative models into model predictive
control (MPC) frameworks, aiming to enhance the control robustness of quadrupedal robots
across diverse terrains and payloads. This is part of my broader vision: developing generaliz-
able models and policies that scale to general robotic applications.

My Future Plan: Generalizable Solutions for Robotic Applications
Generalizability stems from Structural Abstraction and Representation Capacity
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Figure 2: Research roadmap illustrating my future work on generalizable modeling in robotics,
with extensions toward control-guided generative models and advanced embodied intelligence
through vision-language-action frameworks.

Future Research. Optimal control (OC) and reinforcement learning (RL) are two promising
approaches to solve control, planning, and higher-level decision-making problems in robotics
[12]. Enhancing model generalization is crucial across both OC and RL frameworks, while
policy generalization is uniquely critical in RL settings. My research tackles this challenge by
focusing on two complementary themes: (i) leveraging structural insights to guide model and
policy generalization, and (ii) incorporating expressive models, such as generative models, to
enhance adaptability across diverse robotic tasks.

e Model. Models are central to robotics, providing key representations for planning and con-
trol. Incorporating structural feedback from control theory improves model generalization [S],
especially in model-based RL [13], [14]], by calibrating rollouts for more reliable planning.
Using high-capacity generative models further boosts predictive performance [9]], [11]], [15].
Combining these with online learning can be a solution for better trajectory-level adaptation
and generalization.

e Policy. Building adaptable policies for diverse tasks is a core challenge in robotics. This
can be addressed by structurally enhancing baseline policies with modules like environment
encoders [16], residual policy [17] or fine-tuning components [18]], [19], and adaptive mech-
anisms [20], [21]. Generative models can further augment policy generalization [22], while
task-specific fine-tuning enables multi-task and continual learning beyond imitation [23]].

e Extensions. Orthogonal to the above two directions, I am also interested in fine-tuning gener-
ative models using control and optimization. The guidance of diffusion-like generative models
can be seen as an inverse problem [24], [25]], where a goal condition or posterior distribution
is desired to be achieved. This opens up the new possibility of integrating generative models
with control and optimization. In addition, exploring the integration of more advanced embod-
ied foundation models, such as Vision-Language-Action Models [26]], represents a promising
direction. These models combine large-scale perception, reasoning, and decision-making capa-
bilities, potentially enabling robots to perform a broader range of tasks with greater autonomy.
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